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ABSTRACT

Time varying data measured at the wake region of a low speed flow over a bluff body is proven to be turbulent via
the Hurst analysis. By using an iterative filter, a data string is decomposed into smooth and high frequency part. With
the help of a simple Fast Fourier Transform (FFT) algorithm with a small spectrum error, the continuous wavelet
transform, also named as Morlet transform, and modified Hilbert transform are employed to study the insights of the
data string. The FFT algorithm gives a band-passed data so that these two transforms give several new information
about the flow field. Many wave components with variable amplitudes and frequencies are explicitly shown in the
two-dimensional wavelet coefficient plot. It is shown that the wavelet coefficient of the Morlet transform involves
certain error. That error induced by the finite data domain can not be easily eliminated by inverse transform so that the
enhanced Morlet transform give overall qualitative information of the detailed features. The modified Hilbert transform
together with the band-passed data string are employed to study the dominate mode of shedding frequency and several
sub-harmonics. Although it is not known how to precisely define the frequency bandwidth of a mode, the energy
transformed into and out of a mode can be quantitatively extracted. It is interesting to see that, in the wake flow region,
the shedding frequency mode does release energy to other modes and the flow field contains low frequency modulation.
Keywords: Low speed turbulent wake flow, two-dimensional wavelet coefficient plot, energy flow into or out of a

mode.

1. INTRODUCTION

After the work about low frequency unsteadiness by
Bloor’s [1] in 1964, many studies on the low-frequency
variations embedded in the vortex shedding process have
been followed. Miau et al. [2-4] had performed extensive
studies upon the detailed structures and mechanism of
vortex shedding at low Reynolds number. In Ref.[5-9]
Miau et. al. studied the low frequency modulation for
flow over different configurations of bluff bodies, in
different ranges of Reynolds numbers. In these studies,
the Morlet transform [10,11] and empirical mode
decomposition method [12-13] were successfully
employed.

Because of the flow fluctuation within the wake
region is not easy to be studied, Ref.[6,8,9] employed the
empirical mode decomposition method and got many
valuable insights. Since the method of empirical mode
decomposition is principally basing on the average on
the upper and lower envelopes of the data string, it can
not arbitrary control the desired frequency range of a
mode. In this study, the Morlet transform is enhanced by
introducing a band-passed data for every scale function

of the transform [14,15] and iterative filter [16].
Consequently, an overall picture of the time-frequency
feature can be got. In order to examine the energy flow in
and flow out of a mode, the modified Hilbert transform
[12,13,17,18] is employed to find the amplitude of the
band-passed data string correctly. In early days, peopled
believed that the turbulent flow is related to the random
processes [19,20]. One of these studies is the Hurst
analysis [21]. In 1962, Lamperti [22] proved the self-
similar theorem of random process. Later Mandelbrot
[23] pointed that self-similar property can be properly
interpreted by the fractal analysis such that the Hurst
analysis can be employed to identify a random process.
This study will employed the Hurst analysis to make sure
that the flow field studied in Ref.[7] is turbulent.

2. ANALYSIS

Hurst Analysis [21]

Assume that a time series data string & = £(iAt),
i=0L..,N is known. The average of the rescaled
time-span, (¢)_, where 7 < NAt is defined as
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The accumulated departure of the rescaled time-span
X (t',7) corresponding to the different rescale time-span
was defined for t'<z is

xe=Y (6 -().) )

Next, the departure scope R(z) in the range of 7 is
R(z) = max[X (t',z)]- min[X (t', 7] (3)
The standard deviation is defined as

S(r) = F DIEG _@ﬂ (4)

t'=At

The  normalized  departure is  defined as
R/S Consequently, the consistent departure was gotten
by the definition of R/S. Hurst pointed that the exponent
H in the following relation is related to the random
process.

R/S = (k*7)" (5)
where k is a constant. There are three different values
of Hurst exponent which are corresponding to three
kinds of system status in the region of 0<H <1.

1. The case of H =0.5means that the experimental
system appears in random tendency and stays in the
state of a classic Brownian motion (white noise).

2. When H <0.5, it indicates that system is fractional
Brownian motion or pink noise and appears an
anti-persistent status.

3. When H>05, it means that the system is high
fractional Brownian motion or black noise and
appears a persistent status. It also means that the
time series system repeats itself rather than in a fully
random procedure. When the system continuously
goes on, it will decrease in the next period and/or
increase in the subsequent periods. This is a
persistent time series system with a tendency of
following itself previous behavior.

The Iterative Filter Basing on Gaussian Smoothing
Assume that a discrete data string can be

approximated by

N
y(t):ébncos(in j+cnsm(2/{:] (6)

In Ref.[20,21], it was proven that after applying the
Gaussian smoothing once, the resulting smoothed data
becomes

N
N b e PG

n=0
where a(o/4,)is the attenuation factor introduced by
the smoothing and can be proven numerically that
0<a(o/,) ~exp[-272c2 1 221<1 (8)
If the high frequency part is repeatedly smoothed by the
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Gaussian smoothing method, the results are

it | 2at
nZ;[l a(o ! A,)]" {b cos(}L ]+cnsm(l_nﬂ

F(M) = Yo+ Vo + oot Y = Y= Ym

_gAn,m,o—l:bn cos(zﬂ11 J+cn31n{i:tﬂ ©)

wherey;and ¥, are the high frequency and smoothed
parts at ith smoothing step. Finally, y(m) is the
smoothed partand y,, is the high frequency part.

Suppose that all the waveforms within the range of
A <A< are insignificantly small. The above
mentioned iterative smoothing procedure can be an
effective filter to give both the low and high frequency
parts [20,21]. The desired parameters o and number of
iteration steps m are solved by the following
simultaneous equations.

1-[1-exp(-27252 1 2%)]™ =

(10)
1-[l-exp(-27%52 1 23)]" =B

where By;,B, =0.001, 0.999 are employed in this study.
Enhanced Morlet Transform

For the data string of Eq.(6), the Morlet transform
evaluates the wavelet coefficient by the formula.

tye 16(t-7)/ ag—(t- 7)? I(2a? )t 1
f _wy() (11)
where a is called the scale function of the transform.

With the help of the iterative filter, the FFT
algorithm of Ref.[17] is employed to give band-passed
data via the following steps. At first, the iterative filter is
employed to remove the non-sinusoidal and low
frequency parts. Then, the FFT algorithm is used to
evaluate spectrum with small error. For a given scale
function a, the band-passed spectrum is obtained by
weighting the spectrum by a Gaussian function. In fact,
from the wavelet coefficient, it can be proven that, the
maximum response occurs at the mode with 2, =az/3.A
typical example is shown in Fig.1. After the band-passed
spectrum is obtained, the inverse FFT algorithm is
employed to give the band-passed data string for a
specific scale functiona . It can be proven that the
resulting wavelet transform convert data string of Eq.(6)
to be

W, y)z\/é x
{Zb exp[ { Tzzaz} Bﬁ _ﬂ ]exp{izj:r} (12)
S (5 st -T2

Here o is the window size of the Gaussian function on

W(a,z)=—
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spectrum domain and is determined by the relation
o =¢-max[| kn —kng [, Knyg —kp [] (13)

for the n -th mode, where k,=Tyw/4, and cis the
user defined parameter of window size. The resulting
enhanced continuous wavelet transform shown in Eq.(12)
introduces a band-passed window on the Fourier
spectrum whose center located at a typical frequency f,
=1/2, =3/(ax) . Without the extra-window term, the
remaining exp[-a®/2] covers a larger range for a larger
value of f,. This indicates that a large excessive range of
spectrum might be employed to calculate the time-
frequency coefficient so that the error might be large too.
The band-passed factor of T?/(8z°c?) has the effect of
reducing the resolution error to certain extend. So far it is
not known how to relate the window size, o, to physics
and needs further study.
Modified Hilbert Transform

It was proven in Ref.[25] that, for a data string x(t),
the modified Hilbert transform

01- | & exp[-(t-2)* (o)X | 1)
4 z(t-7)-erf 2A40)

is approximately equal to the Hilbert transform x(t) of
x(t) with an infinitesimal error whenever o is large
enough. In fact, J[x(t)] can be considered as the
imaginary part of x(t). The resulting amplitude and
frequency have an obviously smaller error than the
original Hilbert transform around boundary point and
discontinuities.
3. RESULTS AND DISCUSSIONS

Now the experimental data of Ref.[7] is employed
to demonstrate the present modified wavelet transform.
Theu velocity data was taken from 0.5dto 10d at 7
downstream locations along the centerline of the blunt
body’s wake region as shown in Fig.2, respectively,
where d = 32mm is the width of the blunt body and
Rey =16500 is employed. The location of 0.5-1.5d is
within the near wake region, 2d is approximately at the
end of near wake region, while that of 3d is at the
down stream side of the near wake region. The sampling
rate is 500 points/second and measuring time interval is
10 seconds. It means that the minimum resolution of
frequency was 0.1Hz and the sampling time interval was
0.002sec. Those shown in Tablel are values of Hurst
exponent were found in the range from 0.6405 to 0.7229
with a small variances. From the classification of Hurst
analysis, the u velocity data is in the range of
0.5<H <1. In other words, the fluctuation in the flow
field is a black noise process. It repeats itself after some
intermediate procedures which first decays and then
increases and/or vice versa. Therefore, the data is a low
speed turbulent wake flow field.

The iterative filter is employed to give smooth part of
the data and the resulting high frequency part are
considered as u'. Figure.3 shows a typical high
frequency and smoothed part of data measured at point A.
The corresponding Fourier spectrum evaluated by the
FFT algorithm of Ref.[14] is shown in Fig.4. Clearly, if
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the smooth part is not removed the spectrum will involve
certain low frequency error. In order to examine the
overall flow properties, the mean u and u' are
calculated, respectively, as

At 10 sec At 10 sec 1/2
= _ AU —_ AU _ 2
u= UqT ZOU » U UoT Z(U Ulow freq.) (12)

t=0

whereT =10 second and Uy =7m/s is the inlet velocity.

The resulting mean uand U are shown in Fig.5. It

seems that the near wake region is approximately ended

at x=2d where the mean velocity is obviously
recovered from about zero velocity to a large fraction of
inflow mean velocity and the mean velocity fluctuation
suddenly drops to the level of down stream wake region.

It seems reasonable to examine the detailed
time-frequency data at points A, D, and F which are
locations near the base of bluff body, at downstream side
of the near wake region, and at far downstream wake
region. The resulting two-dimensional wavelet
coefficient plot of point A evaluated by the enhanced

Morlet transform are shown in Fig.6 with the window

parameter c=1. A different c represents a different

mode with different band-width which has different
physical meaning. Since this is a first study upon this
issue, only the case of c=1 is examined to examine the

frequency shift among narrow bandwidth modes. A

careful inspection upon these figures reveals the

followings.

1. At an instant of t=constant, there are many wave
components with different wavelengths merged
together to form another wave component. There are
wave component splits into several wave components.
These shows the energy transform between modes. It
seems that this is the first time people can look into the
details about a turbulent data string.

2. Every wave component can not persist indefinitely. It
may terminate itself or may change the frequency so as
to convert to be another wave component which is the
energy transform between wave components with
significant frequency difference.

3. Frequency shift is seen for several modes. That shows
the energy changes between adjacent frequency mode.
4. Every wave component shown in the wavelet
coefficient plot represents a stream with velocity
fluctuation passing through the region around a
measured point. A fluctuation of a wave component
may be induced by many finite fluid segments
involving a series of small eddies (and hence vortices
street in irregular shape). Moreover, the starting and
termination of a wave component represent the
approach and leaving of a series of eddies, vortex
filaments, and non-uniform and oscillatory flow
pockets with variable degree of vorticity. As a
consequence, the time-frequency plot shows that the
flow structure around the measured point is very

complicated and changes rapidly.

Those shown in Figs.7 and 8 are the real part plots of
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cases D and F with c =1, respectively. Many important
features are similar to that shown in Fig.6. The main
difference is that the mode of shedding frequency
becomes a clear band at the immediate downstream point
of the near wake region (see Fig.7) and decays at the
down stream location (see Fig.8).

From Eq.(12), it is obvious that along a single a=
constant line, the wavelet plot accumulates many
information in a region on time and frequency domain
which deteriorate the temporal resolution. In order to
precisely look into the temporal behavior, the modified
Hilbert transform is employed to evaluate the band-
passed data string. Now the bandwidth of a band-passed
data string can be precisely reflected. Those shown in
Fig.9 are the 72Hz band-passed data string, amplitude,
and frequency of case A, respectively. After carefully
checking all the wavelet coefficient plots, the bandwidths
of 0.6, 1.2 and 2.0Hz are suitable to grasp consistent data
for all cases. For convenience, the data and amplitude
plots are shifted by 0.1 and frequency plot shifted by
10Hz for different bandwidths, respectively. Obviously, a
wider bandwidth gives a more complicated wave mode
as shown. The amplitude follows the envelope of the data
string exactly. It is interesting to see that the frequency
oscillation runs over a finite bandwidth of 4Hz which can
be clearly seen in the detailed plot. This oscillation is
introduced by the insufficient sampling rate such that
only about 7 points are employed to resolve a wave
length. The kink around t=3.8 seconds of o =1.5Hz
is caused by the error induced by the almost vanishing
amplitude. Those shown in Fig.10 are result of the
band-passed data string of the first sub-harmonic mode
(36H2z). It is interesting to see that the amplitude is larger
than that of 72Hz. This reflects that, within the near wake
region, the first sub-harmonic mode dominates the flow
fluctuation because the shed vortex is not directly rolled
into the region around the base of the bluff body. This
result consists with the extensive studies of Ref.[8] that
the low frequency modulation dominates this zone. The
frequency oscillation band is now reduced to be 0.5Hz
which reflects the error introduced by using 15 points to
resolve a wavelength.

In the turbulent flow studies, it is interested to
examine quantitatively the energy and energy variation
corresponding to the shedding frequency mode and
sub-harmonic modes. The latter issue is related to the
energy cascade between modes of different frequency.
Although we do not the exact mechanism that an energy
flow into a mode is fed from which mode and an energy
flow out go to which mode, the total amount of flow into
and out of a mode can be calculated from the
band-passed spectrum together with the modified Hilbert
transform. Those shown in Figs.11 are the energy of
different modes with different band-widths with respect
to the distance measured from the base of the bluff body.
The energy of the first sub-harmonic mode is almost the
largest one among all modes in the whole wake region as
noted in previous paragraph. At the downstream location
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within the near wake region, the energy of the shedding
frequency mode gradually increases and up to a
maximum at x=1.5d . After the near wake region , its
energy gradually decay and attains the smallest values
among all the modes shown in the figure. The energy of
the second and third sub-harmonic modes have the
maximum value at x=0.d and gradually decay in a
oscillatory manner. At the far downstream location,
where x > 5d , the energy of all sub-harmonic modes are
competitive with the dominate mode. Up to the location
of x=10d, because the high frequency mode has a
larger dissipation rate, the sub-harmonic modes dominate
the flow which also verify the conclusion of Ref.[8].
Figures.12 show the corresponding rate of energy
changes with respect to that of Fig.11. The energy
changing rate is estimated by the summation of
|r2(t+At)—r?(t)| over the time domain. The energy
changing rate is a measure of energy pumping in and out
of a mode. The figure shows that the main energy
recover is provided by the dominate mode of shedding
frequency. A careful inspection upon the data string
shown in Fig.9a also verifies this fact. At region of
x=05d and d, all the sub-harmonic modes have
similar energy changing rate which reflect the level low
frequency modulation is significant. Near the end of the
near wake region, where x=1.5d , the low frequency
modes does not have a large energy change rate, while
the first sub-harmonic mode receives energy from the
dominate mode to make its energy changing rate
attaining a maximum value as shown. In down stream
location after the near wake region, the high frequency
mode gradually pumps energy back into the low
frequency modes and eventually causes the mean
velocity recovering to the original U, as shown in
Fig.5.
The discussion of employing the modified Hilbert
transform certainly indicates two valuable rewards:
1. The energy and energy exchanging rate of a mode can
be precisely extracted.
2.The resulting variation of both data, amplitude,
frequency, energy, and energy changing rate can be
employed to explain the existing detailed mechanism.
So far it is not known how to employ a suitable
bandwidth of the band-passed data string for both
wavelet calculation and mode evaluation via the
modified Hilbert transform. However, the above
discussion shown that, using several bandwidths, the
wavelet coefficient plot, energy and energy changing rate
of different modes give many detailed information which
can clearly explain many known phenomena.
4. CONCLUSION
The enhanced continuous wavelet transform, modified
Hilbert transform and an FFT algorithm with small error
are successfully employed to examine a low speed flow
over a bluff body. The flow field is proven to be
turbulent via the Hurst analysis. Many qualitative details
are reflected by the resulting wavelet coefficient plots
which are not seen before. By using the modified Hilbert
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transform, the amplitude and frequency of a mode of a
band-passed spectrum can be precisely evaluated. The
quantities of energy and the total energy exchanging rate
of a mode can be explicitly calculated. The further work
should be addressed on how to relate the window size of
the band-passed spectrum to physics so that it can be
reasonably defined.
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Fig.1 Original and band-passed spectrums: dashed line is
the original spectrum and solid line is a band-passed
spectrum.
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Fig.2 A schematic drawing of wake flow and setup of
measuring position, d = 32 mm. The locations are:

0.5d for A, 1d for B, 1.5d for C, 2d for D, 3d for E,
5d for F, and 10d for G.

Fig.3 One of the high frequency and smooth parts
measured at point A.
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Fig.4 The spectrum of the high frequency part of Fig.2.
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Fig.5 The mean u/U,and u'/U,velocity measured at
different locations.
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Real Part

Fig.6 The amplitude and real part of the wavelet
coefficient plot of case A, generated by the proposed

modified Morlet transform, scale factor of spectrum
windowing is c=1.
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Fig.7 The amplitude and real part of the wavelet
coefficient plot of case D, generated by the proposed

modified Morlet transform, scale factor of spectrum
windowing is C =1.

s
=l ki e — e e
Absolute Value

Fig.8 The amplitude and real part of the wavelet
coefficient plot of case F, generated by the
proposed modified Morlet transform, scale
factor of spectrum windowing is c=1.
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Fig.9 The 72Hz mode of the Case A with different
bandwidth: (a) is data; (b) is amplitude; and (c) is
frequency. Three bandwidths are employed: 0.3,

1.2 and 1.5 Hz.
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Fig.10 The 36Hz mode of the Case A with different
bandwidth: (a) is data; (b) is amplitude; and (c) is
frequency. Three bandwidths are employed: 0.3,
1.2 and 1.5 Hz.
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Fig.11 The mean energy of different modes at different
measured location: (2) uses a bandwidth of 0.6Hz;
(b) uses 1.2Hz; and (c) uses 2Hz.
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Fig.12 The mean energy variation of different modes at
different measured location: (a) uses a bandwidth
of 0.6Hz; (b) uses 1.2Hz; and (c) uses 2Hz.
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