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ABSTRACT

A fast version of the iterative Gaussian smoothing,
which can properly remove the non-sinusoidal part of a data
string with an operation count in the same order of applying
a Fast Fourier Transform (FFT), say less than 2N In(N)
+100N , is proposed. In order to shrink the transition zone
of the Gaussian smoothing method, in a series of recent
studies, the iterative Gaussian smoothing method had been
constructed by repeatedly smoothing the high frequency
part. Like the Gaussian smoothing, the resulting smooth part
had been proven to be approximately diffusive with respect
to the original data string too. However, this promising
procedure requires a long computing time. In order to speed
up the turn around time, the estimated attenuation factor of
the iterative scheme, which is in a close form, is employed
to construct an approximate and fast iterative method. The
spectrum of the remaining high frequency is obtained
immediately after multiplying every Fourier mode by the
corresponding attenuation factor with proper power. In this
study, the linear trend removal is employed to reduced the
error magnitude due to the missing data beyond the
interested region. A few tests were examined to show the
performance of the proposed procedure.

Keywords: iterative Gaussian smoothing method, spectral
method, linear trend removal

1. INTRODUCTION

Because of the development of computer hardware
and software, the capability of collecting long data strings is
rapidly increasing. Engineering applications of these data
heavily rely on the understanding of the involved details. It
seems that the most convenient tool to look into the details
of a data string is the FFT algorithm [1,2,3]. Currently, most
FFT algorithms evaluate the spectrum without any treatment
upon the data string. Although the non-sinusoidal part of a
data string has a certain contribution to almost every mode,
the corresponding spectral studies were successfully carried
out in the medium and high frequency zones where this
Direct Current (DC) contamination is not serious [1,2,3]. In
fact, there are many engineering problems related to the low

frequency zone. For example, in a complicated system
involving many rotational components, such as bearings,
rotators, and wheels etc., the vibration condition induced by
the sub-harmonic modes of these rotating parts may
seriously relate to the system performance and/or failure.
Consequently, detailed studies concerning the low
frequency zone were not fully developed in many
engineering problems.

To the authors’ knowledge, a potential method to
remove the non-sinusoidal part is the Gaussian smoothing
method [4-6] which was known to be widely applied in
many fields after the work of Marr and Hildreth in 1980 [7].
In Ref.[8], properties of smoothing methods were
discussed and higher-order differentiation filters were
developed. Ray and Ray [9] had made an interesting
extension to repeatedly smooth the smooth part.

In order to reduce the DC contamination, ref.[10]
restudied the Gaussian smoothing method. The relation
between the original data and resulting smoothed data was
proven to be the numerical approximation of that observed
between the initial temperature distribution and the exact
solution at a corresponding instant of the equation for
unsteady one-dimensional heat conduction [11]. Since the
resulting transition zone of applying the Gaussian
smoothing is too wide to service as a filter, an iterative
Gaussian smoothing different from that of Ref.[10] was
developed.

In later studies [12,13], if the original data involves a
polynomial of finite degree, the resulting high frequency
part of applying the Gaussian smoothing using a proper
smoothing window width o , was proven to reduce the
degree of the polynomial by 2. Suppose that the non-
sinusoidal part embedded in a data string can be properly
approximated by a polynomial of finite degree, the
sinusoidal part can be extracted by the iterative filter.
Unfortunately, although the iterative filter effectively
shrinks the transition zone, it required too much computing
resource. Therefore, the main concerning is to speed up
iterative filter.

In this study, the Gaussian smoothing and iterative
filter will be briefly restated. Next, the procedure to
determine number of iteration cycle and Gaussian window
size will be show. Then, the proposed spectral method and



error estimation will be presented. Finally, two tests will be
examined to show the performance of the new procedure.

2. THEORETICAL DEVELOPMENT
1. Previous Works
1.1 Gaussian Smoothing method
Consider a set of infinite data (tj,yj), tj =iAt, —w<i<o,
to be smoothed. The zero-th order moving least-squares
method weighted by the Gaussian function will give
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AsAt -0, k >+/27c/(At) and the above formula becomes
the explicit form shown in Ref.[*-*]. Assume y; can be

expressed in the following form

© 2t 27t M n

yj= 2 [cicos +djsin + 2 Pntj] (2),
1=0 % A nzo

where 4 is the wavelength of the 1- th mode and the

second summation represents the non-sinusoidal part and
M is referred to as the largest power for which p, —0 for

all n>M . For a finite data string with a period of T ,
A =T /1, the upper limit of the summation is a finite integer

and Eq.(3) is just a Fourier series expansion. Ref.[10,12,13]
showed that the following filtering procedure works very
well without knowing the exact form of the spectrum,
involving a prior knowledge of the values of ¢; ’s, d; ’s and

A1’s. After applying the Gaussian smoothing method, it can
be shown that the response is [10,12-13]
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which satisfies +s<a(o,4)<1 where ¢ is a positive
machine round-off error. While the second inequality
appears to be obvious, the first inequality can only be
verified by extensive numerical tests - for modes
having o >> 4 , the exponential function of Eq. (4) is a

positive value close to 0 but the error term, may take a
negative small value. In other words, the Gaussian
smoothing is approximately diffusive. The remaining high
frequency part is
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such that the polynomial degree is reduced by 2.
1.2 Iterative Gaussian Smoothing Method

It is easy to show that the transition zone, say the
range of 1/c where §<a(c,4)<1-45, is too wide. In order
to shrink this zone, the remaining high frequency part is
repeatedly smoothed. Up to m -th cycle the remaining high
frequency part will be [10,12-13]
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where the second summation will disappear if 2m>M and
b(o, 41, m)=(L-a(o, 4))". ).

It can be shown that 0<b(c, 4;,m) <1+ me , which shows
that the iterative procedure is approximately diffusive.
Suppose we applied the iterative Gaussian smoothing
method to a data string having two distinct wave lengths,
A and Ay, where 4 <4,. If we would like to retain 4 -

wave while filter 4, -wave , it is intuitive to require that
[L-a(o, )" ~ L—exp{fZﬂzaz 1 242 }]m -1-5

[1—3(0', /12)]m ~ L—exp{727r20'2 /222}]m =0
where the parameter § can take an arbitrarily small value.
The solution of this set of simultaneous equations will give
the value of the smoothing factor o and the number of
cycles, m, required to perform the decomposition of the
two waves. Note that, as the value of 4,/4 becomes
smaller than 2 (whose corresponding parameters are
6=0.001, o/ 4 =0.7715 and m ~127), the required number
of the iteration cycle increase exponentially. For example,
when 1,/4; =15, 8134 iteration steps are needed to
separate the two waves.
1.3 Filtering Discrete Data String of finite Range

For the problem of filtering a finite data string,
(tj, yi), tj =iAt,i=012,..,N , assume that the polynomial of
Eq.(1) is represented by the Fourier expansion. The
application of the Gaussian smoothing method will give [13]
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It seems that, since the smoothing is approximately
diffusive, there is no information exchange between
different Fourier modes after applying the Gaussian
smoothing. The corresponding result of applying the
iterative Gaussian smoothing to a finite data string is Eq.(9)
with y'j,cp,¢pj1,dp, and dyji replaced by y'jm,
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It can be shown that, for all the interior points where
50/At< j<N-1-55/At, all the Gaussian functions at the
i—th missing point in the range of —wo<i<—j and n—j

<i<w , respectively, are less than e 12°~3.73x1070 .
Therefore, for these interior points, the smooth responses
are almost the same as that estimated by Eq.(3). However,
for those points around the two ends where 0< j <50 /At
and N-1-5c/At< j< N, the missing points will inevitably
make the smooth response deviating from that shown in
Eq.(4). For convenience, the location of having deviation
being equal to & is referred to as xs . As the iteration cycle

increases, xs will becomes larger and larger. A careful

inspection upon Egs.(5,6) and (9) reveals that, the error
upper bond can be estimated by directly calculating the
difference between y'j ns of Eq.(6) and (9), respectively,

with unity values of ¢; and d; for 1 =1 because of a(c, 4)
attains the maximum value among all a(o, 4;) s for a given

o . With such an estimation, it is numerically shown that the
following formula is a proper estimation in the range of

1<m<10%.
X0.001 /o ~3.4+2.83 |0910 (m) (10)

In other words, the error penetration distance increases
exponentially with respect to the number of iteration cycle.
Extensive numerical experiments show that Eq.(10) applies
to both sinusoidal and non-sinusoidal parts.
2. Propose Fast Scheme
2.1 Remove the non-sinusoidal part

Since the non-sinusoidal part of most engineering data
can be properly approximated by a polynomial of degree
250, it is reasonable to employ the parameter of 1,/ 4 =2,

say 6=0.001, o/ =0.7715 and m~127 . If the acceptable

error around the two ends is 0.01, the error penetration
distance 50 is recommended. However, 127 iteration cycles

requires a long computing time for many practical problems.

In order to speed up both the original and iterative Gaussian

smoothing methods, the following procedure is proposed.

1. Properly choose two end points of the data string and
connect them with a straight line.

2. Substrate the straight line from the original data string.
Find the Fourier spectrum via an FFT algorithm.
Determine the transition zone where 1,/4; >2 and

A1 <0.05T . Use Eq.(8) to evaluate & and m.
5. Multiple every Fourier mode by the factor

b(c, 4, m) = L—exp(— 27252 12 )]m (1)

6. Evaluate the inverse FFT of the resulting spectrum to
obtain the high frequency part.

7. The summation of the straight line and difference
between the original data and high frequency part is the
smooth part.

If data point number N is larger than 1000, the operation

count of the proposed procedure is slightly larger than the

sum of forward and inverse FFT because to embed the
attenuation factor b(c, 4;,m) and to evaluate & and m use

a count in the same order of 10N . If the straight line takes
the two ends the same as that of the original data, the
method is referred to as the well known linear trend removal
[14].
2.2 Resulting Error around an End of Proposed Method
If the original data string is infinitely long, the
resulting smooth and high frequency parts generated by the
iterative Gaussian smoothing and proposed methods without
the linear trend removal will have not obvious difference
except that caused by the integration error of Eq.(4). It
means that the proposed scheme has the same least squares
nature as the iterative Gaussian smoothing. The proposed
algorithm uses the Fourier spectrum as the basic step to
construct the analogy iterative Gaussian smoothing. It
means that the Fourier spectrum repeatedly copies the
original data to be those data beyond the interested range.

However, if the original data point is N=2%—L , most
commercial FFT algorithm adds addition L points with O
value so as to achieve the fastest efficiency. For the
proposed scheme, it is equivalent to repeatedly copy
original N points with original data and L points with zero
value. The resulting error around the two ends is induced by
the difference between the original data (assumed to have
infinitely many points) and periodically assumed points.
Although this error is somewhat different from the original
iterative Gaussian smoothing, numerical experiments show
that these modifications do introduce the same error
penetration effect as the iterative Gaussian smoothing. In
other words, the error penetration distance is increased as
the iteration steps m increases. For the parameter
arrangement of A,/ 4 =2, say §=0.001, o/4 =0.7715 and

m ~127 , the sinusoidal data in the interior region where
5o <t<tmax —5o can be properly approximated by the

resulting spectrum.

Principally speaking, the end point data to construct
the straight line determine the accuracy of the proposed
spectrum generator to certain extent. The reason comes
from the fact that, since number of data point is arbitrary,
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most FFT algorithm feeds zero value to make the total
number to be an integer power of 2 or else. In other words,
if these ends are just that of the embedded smooth part, the
error induced by the finite data length can be effectively
suppressed. In this study, an end point is chosen according
to the following rule. For example, the left end satisfies the
criterion.
YL = Vieft < YU
YL =Y —KAYmax, YU =Y +KAYmax
AYmax =Max(yo, Y1..-ya) = Min(yo, ¥1,... Ya)
¥ =[Max(yg.y1,--ya) + Min(yg, y1.... ya)l/ 2
The region from the left most point and point A should
involve at least 2 local maximum and minimum points. The
right end is chosen in a similar manner. Then, the data string
to be treated by the proposed method is as follows.
y(t) = Yoriginal ~ Ylinear (13)
Yiinear = Yleft + (Yright — Yieft)(t —t0) /(tmax —to)
2.3 Sharp filter of the remaining high frequency part
Since the remaining high frequency part is generated
in the fifth step of the above mentioned procedure, a band-
passed limited spectrum can easily being obtained by
imposing the desired window. Although this window can be
infinitely sharp, there are errors around the two ends. In
other words, the corresponding spectrum only accurately
reflects the high frequency part in the interior region, where
50 <t <tmax —50 .

RESULTS AND DISCUSSIONS

(12)

In order to examine the performance of the proposed
procedure, the following given data is employed.

2
y(t) =1.2+ 2t +0.5t2 +0.3e %" sin(62t)
+0.4sin(100t) + 0.2sin(56 1) (14)

+0.3(1+2t +t2)e_0'5t2 sin(32at)
where 0<t<1. For numerical manipulation, 8190 uniform
mesh points were employed to resolute the above function.
The original iterative Gaussian smoothing uses the
following parameters, §=0.00L,m=126 , and o=05 ,

respectively. The present fast method just employ a simple

FFT algorithm with 2X>8190 data points in which all the
artificially embedded points were fed with a 0 value. Those
shown in Fig.1 are the original data (thin solid), original
smooth part (heavy solid), estimated smooth part via the
original iterative Gaussian smoothing (solid) and result of
the present approach (dotted line). The corresponding error
distributions are shown in Fig.2. In the interior region, both
the original and present approaches almost recover the
original data. However, around the two ends, both methods
introduce error as shown. The proposed method even
produces a larger error than the original iterative Gaussian
smoothing because of the embedded zero value for points
whose index larger than 8190.

Since two ends of the data string of Eq.(14) satisfy the
criterion of Eq.(12), the linear trend removal method uses
y(0) and y(1) as the left and right ends of the straight line.

The resulting smooth part and error distributions are shown
in Figs.3 and 4, respectively. A careful inspection upon
Figs.1 through 4 reveals that the linear trend removal
reduces the magnitude of missing data. Consequently, the
magnitude of error source of Fig.3 is smaller than that of
Fig.1. Thus the error of Fig.4 in the region around the two
ends is obviously smaller than that of Fig.2.

The second test problem employs the following formulas.

2
y(t) = 0.1t —0.1t2 +0.3e 7% sin(6t)
+0.4sin(1004t) + 0.2sin(564t) (15)

+03(1+ 2t +12)e05 sin(a2)

The magnitudes of the polynomial are approximately 0 so as
to inspect the effect of the magnitude of missing data on the
error distribution. Figures 5 through 8 show resulting data
and error distributions corresponding to those shown in
Figs.1 through 4. It is interesting to see that, for the data
string of EQ.(15) where magnitudes of the non-sinusoidal
and extreme low frequency part around the two ends are
slightly scattering from the zero value, the linear trend
removal does not have the effect of reducing error. On the
other hand, it is obviously that Figs.4 and Figs.8 are rather
similar. That means the linear trend removal performs very
well in problems whose non-sinusoidal parts are signify-
cantly non-periodic. As a consequence, it is recommended
to equip the linear trend removal to the proposed fast
method.

Figure 9 shows the resulting smooth part estimated by
the iterative Gaussian smoothing (heavy solid line) and the
proposed method without linear trend removal (dashed line),
respectively. The smooth part generated by the iterative
Gaussian smoothing has upward going trend around the two
end because of the temporary data. On the other hand, the
missing data, with zero values, bends the result of present
scheme downward as shown. The dashed line shown in
Fig.10 uses the present method with linear trend removal
which reduces the effect of missing data. Although there is
no evidence, the author believes that that estimated by the
linear trend removal is more reasonable than others.

The above discussions can be summarized as follows.
1. The proposed fast version has almost the same

performance as the iterative Gaussian smoothing
performed on the time domain.

2. The proposed method has the same error penetration
distance character as the original method. In order to
have a small enough error region around the two ends,
it is recommended to use parameter set of &=0.001,
o121 =0.7715 and m=127 .

3. The operation count of the proposed method is
approximately equal to 2N InN +kN , where k <100 .



4. The linear trend removal can effectively reduce the
error around the two ends.

CONCLUSIONS

The original iterative Gaussian smoothing is
approximated by a fast version. The resulting smooth and
high frequency parts have the same order of accuracy in the
interior region. The error around the two ends of a data
string of finite length is similar to that the original method
too. The linear trend removal is successfully employed to
suppress the error around the two ends. Since the present
method has an operation count about twice that of the FFT
algorithm, it can be employed as a convenient tool for
further studied.
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Fig.1 The original data of Eq.(14) and smooth parts
estimations: original data is the thin solid line, original
smooth part is the heavy solid line, smooth part estimated
by the original iterative Gaussian smoothing is the solid line,
and that estimated by the present method is the dotted line.
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Fig.2 Error distributions of Fig.1: the solid line shows the
error estimated by the iterative Gaussian smoothing
and the dotted line is the error estimated by the
present method.



5 Smoothed part data
solid line : original smocth part
long dashed : t-domain iterative Gaussian smoothing 2k
- heavy dotted line: fast method, original linear trend
ar removal F
del=0.001, sigma=0.5,125it ok
3k /i‘l E -
- -~ \ g 2
‘é 3
2+ =Lk
\ sk
L sk
A
o5 ﬁé — i _ _
Fig.6 Error distributions of Fig.5: the solid line shows the

error estimated by the iterative Gaussian smoothing
and the dotted line is the error estimated by the
present method.

Fig.3 Distributions of smooth parts estimations: original
smooth part is the heavy solid line, smooth part
estimated by the original iterative Gaussian
smoothing is the solid line, and that estimated by the
present method is the dotted line.
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Fig.7 The original data of Eq.(15) and smooth parts
estimations: original data is the thin solid line,
original smooth part is the heavy solid line, smooth
part estimated by the original iterative Gaussian
smoothing is the solid line, and that estimated by the
present method using the linear trend removal is the

Fig.4 Error distributions of Fig.3: the solid line shows the
error estimated by the iterative Gaussian smoothing
and the dotted line is the error estimated by the
present method.
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' pata
| thindotted :original data [rormisne o
heavy solid : original smoothed part
long dashed : t-domain, sigma =0.5, 126 it.
2L heavy dotted : fast method, sigma = 0.5, 126 it. Error of npart
without linear trend removal 25 peay solid + tomain, sigma = 0.5, 126 1,
[ long dashed: fast method, sigma = 0.5, 126 it
1 with linear trend removal
0
o
g
§ 2
=]
S LU
g
-4
5
1 1 1 1 1 &
0 2 4 6 8
time Tk P A L |
g H 4 € &

Fig.5 The original data of Eq.(15) and smooth parts - :
estimations: original data is the thin solid line,  Fig.8 Error distributions of Fig.7: the solid line shows the
original smooth part is the heavy solid line, smooth error estimated by the iterative Gaussian smoothing

part estimated by the original iterative Gaussian
smoothing is the solid line, and that estimated by the
present method is the dotted line.

and the dotted line is the error estimated by the
present method.
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e : smooth part of iterative Gaussian
on time domain
heavy dash line : smoth part of fast method, without
linear trend removal
sigma = 0.5, 126 iterative cycles
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Fig.9 The turbulent data distribution: thin solid is the
original data; the heavy line is the smoothed part
estimated by the iterative Gaussian smoothing; and the
dashed line is estimated by the present method without
linear trend removal.
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Fig.10 The turbulent data distribution: thin solid is the
original data; the heavy line is the smoothed part
estimated by the iterative Gaussian smoothing; and the
dashed line is estimated by the present method linear
trend removal.
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