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ABSTRACT 
 

A fast version of the iterative Gaussian smoothing, 
which can properly remove the non-sinusoidal part of a data 
string with an operation count in the same order of applying 
a Fast Fourier Transform (FFT), say less than )ln(2 NN  

N100+ , is proposed. In order to shrink the transition zone 
of the Gaussian smoothing method, in a series of recent 
studies, the iterative Gaussian smoothing method had been 
constructed by repeatedly smoothing the high frequency 
part. Like the Gaussian smoothing, the resulting smooth part 
had been proven to be approximately diffusive with respect 
to the original data string too. However, this promising 
procedure requires a long computing time. In order to speed 
up the turn around time, the estimated attenuation factor of 
the iterative scheme, which is in a close form, is employed 
to construct an approximate and fast iterative method. The 
spectrum of the remaining high frequency is obtained 
immediately after multiplying every Fourier mode by the 
corresponding attenuation factor with proper power. In this 
study, the linear trend removal is employed to reduced the 
error magnitude due to the missing data beyond the 
interested region. A few tests were examined to show the 
performance of the proposed procedure. 
Keywords: iterative Gaussian smoothing method, spectral 

method, linear trend removal 
 

1. INTRODUCTION 
 

Because of the development of computer hardware 
and software, the capability of collecting long data strings is 
rapidly increasing. Engineering applications of these data 
heavily rely on the understanding of the involved details. It 
seems that the most convenient tool to look into the details 
of a data string is the FFT algorithm [1,2,3]. Currently, most 
FFT algorithms evaluate the spectrum without any treatment 
upon the data string. Although the non-sinusoidal part of a 
data string has a certain contribution to almost every mode, 
the corresponding spectral studies were successfully carried 
out in the medium and high frequency zones where this 
Direct Current (DC) contamination is not serious [1,2,3]. In 
fact, there are many engineering problems related to the low 

frequency zone. For example, in a complicated system 
involving many rotational components, such as bearings, 
rotators, and wheels etc., the vibration condition induced by 
the sub-harmonic modes of these rotating parts may 
seriously relate to the system performance and/or failure. 
Consequently, detailed studies concerning the low 
frequency zone were not fully developed in many 
engineering problems. 

To the authors’ knowledge, a potential method to 
remove the non-sinusoidal part is the Gaussian smoothing 
method [4-6] which was known to be widely applied in 
many fields after the work of Marr and Hildreth in 1980 [7].  
In Ref.[8],  properties of  smoothing methods were 
discussed and higher-order differentiation filters were 
developed. Ray and Ray [9] had made an interesting 
extension to repeatedly smooth the smooth part.  

In order to reduce the DC contamination, ref.[10] 
restudied the Gaussian smoothing method. The relation 
between the original data and resulting smoothed data was 
proven to be the numerical approximation of that observed 
between the initial temperature distribution and the exact 
solution at a corresponding instant of the equation for 
unsteady one-dimensional heat conduction [11]. Since the 
resulting transition zone of applying the Gaussian 
smoothing is too wide to service as a filter, an iterative 
Gaussian smoothing different from that of Ref.[10] was 
developed. 

In later studies [12,13], if the original data involves a 
polynomial of finite degree, the resulting high frequency 
part of applying the Gaussian smoothing using a proper 
smoothing window width σ , was proven to reduce the 
degree of the polynomial by 2. Suppose that the non-
sinusoidal part embedded in a data string can be properly 
approximated by a polynomial of finite degree, the 
sinusoidal part can be extracted by the iterative filter. 
Unfortunately, although the iterative filter effectively 
shrinks the transition zone, it required too much computing 
resource. Therefore, the main concerning is to speed up 
iterative filter. 

In this study, the Gaussian smoothing and iterative 
filter will be briefly restated. Next, the procedure to 
determine number of iteration cycle and Gaussian window 
size will be show. Then, the proposed spectral method and 
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error estimation will be presented. Finally, two tests will be 
examined to show the performance of the new procedure. 
 

2. THEORETICAL DEVELOPMENT 
1.  Previous Works 
1.1  Gaussian Smoothing method 
Consider a set of infinite data ,),,( tityt iii Δ=  ∞<<∞− i , 
to be smoothed. The zero-th order moving least-squares 
method weighted by the Gaussian function will give  
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As 0→Δt , )/(2 tk Δ→ σπ  and the above formula becomes 
the explicit form shown in Ref.[*-*]. Assume jy  can be 
expressed in the following form  
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where lλ  is the wavelength of the −l th mode and the 
second summation represents the non-sinusoidal part and 
M is referred to as the largest power for which 0→np  for 
all Mn > . For a finite data string with a period of T , 

lTl /=λ , the upper limit of the summation is a finite integer 
and Eq.(3) is just a Fourier series expansion. Ref.[10,12,13] 
showed that the following filtering procedure works very 
well without knowing the exact form of the spectrum, 
involving a prior knowledge of the values of lc ’s, ld ’s and 

lλ ’s. After applying the Gaussian smoothing method, it can 
be shown that the response is [10,12-13] 
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where 1,nq s are coefficients independent of 0p  and 1p  and 
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which satisfies 1),( ≤≤± la λσε  where ε  is a positive 
machine round-off error. While the second inequality 
appears to be obvious, the first inequality can only be 
verified by extensive numerical tests - for modes 
having lλσ >> , the exponential function of Eq. (4) is a 
positive value close to 0 but the error term, may take a 
negative small value. In other words, the Gaussian 
smoothing is approximately diffusive. The remaining high 
frequency part is 
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such that the polynomial degree is reduced by 2. 
1.2  Iterative Gaussian Smoothing Method 

It is easy to show that the transition zone, say the 
range of σλ /  where δλσδ −≤≤ 1),(a , is too wide. In order 
to shrink this zone, the remaining high frequency part is 
repeatedly smoothed. Up to m -th cycle the remaining high 
frequency part will be [10,12-13] 
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where the second summation will disappear if Mm >2 and  
( )mll amb ),(1),,( λσλσ −= .                                          (7). 

It can be shown that ελσ mmb l ±≤≤ 1),,(0 , which shows 
that the iterative procedure is approximately diffusive. 

Suppose we applied the iterative Gaussian smoothing 
method to a data string having two distinct wave lengths, 

1λ  and 2λ , where 21 λλ < . If we would like to retain 1λ -
wave while filter 2λ -wave , it is intuitive to require that 
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where the parameter δ  can take an arbitrarily small value. 
The solution of this set of simultaneous equations will give 
the value of the smoothing factor σ  and the number of 
cycles, m , required to perform the decomposition of the 
two waves. Note that, as the value of 12 / λλ  becomes 
smaller than 2 (whose corresponding parameters are 

001.0=δ , 7715.0/ 1 =λσ  and 127≈m ), the required number 
of the iteration cycle increase exponentially. For example, 
when 5.1/ 12 =λλ , 8134 iteration steps are needed to 
separate the two waves. 
1.3  Filtering Discrete Data String of finite Range 

For the problem of filtering a finite data string, 
Nitityt iii ,...,2,1,0,),,( =Δ= , assume that the polynomial of 

Eq.(1) is represented by the Fourier expansion. The 
application of the Gaussian smoothing method will give [13]  
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It seems that, since the smoothing is approximately 
diffusive, there is no information exchange between 
different Fourier modes after applying the Gaussian 
smoothing. The corresponding result of applying the 
iterative Gaussian smoothing to a finite data string is Eq.(9) 
with ,,,,' 1,, ljllj dccy and 1,, jld  replaced by ,' ,mjy  

,1,, −+ mjilc  1,,,, , −+ mjilmjl dc , and mjld ,, , respectively.  
It can be shown that, for all the interior points where 

tNjt Δ−−<<Δ /51/5 σσ , all the Gaussian functions at the 
−i th missing point in the range of ji −<<−∞  and jn −  

∞<< i , respectively, are less than 65.12 1073.3 −− ×≈e . 
Therefore, for these interior points, the smooth responses 
are almost the same as that estimated by Eq.(3). However, 
for those points around the two ends where tj Δ<≤ /50 σ  
and NjtN <<Δ−− /51 σ , the missing points will inevitably 
make the smooth response deviating from that shown in 
Eq.(4). For convenience, the location of having deviation 
being equal to δ  is referred to as δx . As the iteration cycle 
increases, δx  will becomes larger and larger. A careful 
inspection upon Eqs.(5,6) and (9) reveals that, the error 
upper bond can be estimated by directly calculating the 
difference between mjy ,' s of  Eq.(6) and (9), respectively,  
with unity values of lc  and ld  for 1=l  because of ),( 1λσa  
attains the maximum value among all  ),( la λσ s for a given 
σ . With such an estimation, it is numerically shown that the 
following formula is a proper estimation in the range of 

4101 ≤≤ m . 
)(log83.24.3/ 10001.0 mx +≈σ                                           (10) 

In other words, the error penetration distance increases 
exponentially with respect to the number of iteration cycle. 
Extensive numerical experiments show that Eq.(10) applies 
to both sinusoidal and non-sinusoidal parts. 
2. Propose Fast Scheme 
2.1 Remove the non-sinusoidal part 

Since the non-sinusoidal part of most engineering data 
can be properly approximated by a polynomial of degree 
250, it is reasonable to employ the parameter of 12 / λλ =2, 
say 001.0=δ , 7715.0/ 1 =λσ  and 127≈m . If the acceptable 
error around the two ends is 0.01, the error penetration 
distance σ5  is recommended. However, 127 iteration cycles 
requires a long computing time for many practical problems. 
In order to speed up both the original and iterative Gaussian 
smoothing methods, the following procedure is proposed.  
1. Properly choose two end points of the data string and 

connect them with a straight line. 

2.  Substrate the straight line from the original data string. 
3. Find the Fourier spectrum via an FFT algorithm. 
4. Determine the transition zone where 2/ 12 >λλ  and 

T05.01 <λ . Use Eq.(8) to evaluate σ  and m. 
5. Multiple every Fourier mode by the factor 

( )[ ]mll mb λσπλσ /2exp1),,( 22−−=                          (11) 
6. Evaluate the inverse FFT of the resulting spectrum to 

obtain the high frequency part. 
7. The summation of the straight line and difference 

between the original data and high frequency part is the 
smooth part. 

If data point number N  is larger than 1000, the operation 
count of the proposed procedure is slightly larger than the 
sum of forward and inverse FFT because to embed the 
attenuation factor ),,( mb lλσ   and to evaluate σ  and m  use 
a count in the same order of N10 . If the straight line takes 
the two ends the same as that of the original data, the 
method is referred to as the well known linear trend removal 
[14]. 
2.2 Resulting Error around an End of Proposed Method 

If the original data string is infinitely long, the 
resulting smooth and high frequency parts generated by the 
iterative Gaussian smoothing and proposed methods without 
the linear trend removal will have not obvious difference 
except that caused by the integration error of Eq.(4). It 
means that the proposed scheme has the same least squares 
nature as the iterative Gaussian smoothing. The proposed 
algorithm uses the Fourier spectrum as the basic step to 
construct the analogy iterative Gaussian smoothing. It 
means that the Fourier spectrum repeatedly copies the 
original data to be those data beyond the interested range. 
However, if the original data point is LN k −= 2 , most 
commercial FFT algorithm adds addition L  points with 0 
value so as to achieve the fastest efficiency. For the 
proposed scheme, it is equivalent to repeatedly copy 
original N points with original data and L  points with zero 
value. The resulting error around the two ends is induced by 
the difference between the original data (assumed to have 
infinitely many points) and periodically assumed points. 
Although this error is somewhat different from the original 
iterative Gaussian smoothing, numerical experiments show 
that these modifications do introduce the same error 
penetration effect as the iterative Gaussian smoothing. In 
other words, the error penetration distance is increased as 
the iteration steps m  increases. For the parameter 
arrangement of  12 / λλ =2, say 001.0=δ , 7715.0/ 1 =λσ  and 

127≈m , the sinusoidal data in the interior region where 
σσ 55 max −<< tt  can be properly approximated by the 

resulting spectrum.  
Principally speaking, the end point data to construct 

the straight line determine the accuracy of the proposed 
spectrum generator to certain extent. The reason comes 
from the fact that, since number of data point is arbitrary, 
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most FFT algorithm feeds zero value to make the total 
number to be an integer power of 2 or else. In other words, 
if these ends are just that of the embedded smooth part, the 
error induced by the finite data length can be effectively 
suppressed. In this study, an end point is chosen according 
to the following rule. For example, the left end satisfies the 
criterion. 
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The region from the left most point and point A  should 
involve at least 2 local maximum and minimum points. The 
right end is chosen in a similar manner. Then, the data string 
to be treated by the proposed method is as follows. 
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2.3 Sharp filter of the remaining high frequency part 
Since the remaining high frequency part is generated 

in the fifth step of the above mentioned procedure, a band-
passed limited spectrum can easily being obtained by 
imposing the desired window. Although this window can be 
infinitely sharp, there are errors around the two ends. In 
other words, the corresponding spectrum only accurately 
reflects the high frequency part in the interior region, where 

t<σ5 σ5max −< t . 
RESULTS AND DISCUSSIONS 
 

       In order to examine the performance of the proposed 
procedure, the following given data is employed. 
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where 10 ≤≤ t . For numerical manipulation, 8190 uniform 
mesh points were employed to resolute the above function. 
The original iterative Gaussian smoothing uses the 
following parameters, 126,001.0 == mδ , and 5.0=σ , 
respectively. The present fast method just employ a simple 
FFT algorithm with k2 >8190 data points in which all the 
artificially embedded points were fed with a 0 value. Those 
shown in Fig.1 are the original data (thin solid), original 
smooth part (heavy solid), estimated smooth part via the 
original iterative Gaussian smoothing (solid) and result of 
the present approach (dotted line). The corresponding error 
distributions are shown in Fig.2. In the interior region, both 
the original and present approaches almost recover the 
original data. However, around the two ends, both methods 
introduce error as shown. The proposed method even 
produces a larger error than the original iterative Gaussian 
smoothing because of the embedded zero value for points 
whose index larger than 8190. 

      Since two ends of  the data string of Eq.(14) satisfy the 
criterion of Eq.(12), the linear trend removal method uses 

)0(y and )1(y  as the left and right ends of the straight line. 
The resulting smooth part and error distributions are shown 
in Figs.3 and 4, respectively. A careful inspection upon 
Figs.1 through 4 reveals that the linear trend removal 
reduces the magnitude of missing data. Consequently, the 
magnitude of error source of Fig.3 is smaller than that of 
Fig.1. Thus the error of Fig.4 in the region around the two 
ends is obviously smaller than that of Fig.2. 
     The second test problem employs the following formulas. 
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The magnitudes of the polynomial are approximately 0 so as 
to inspect the effect of the magnitude of missing data on the 
error distribution. Figures 5 through 8 show resulting data 
and error distributions corresponding to those shown in 
Figs.1 through 4. It is interesting to see that, for the data 
string of Eq.(15) where magnitudes of the non-sinusoidal 
and extreme low frequency part around the two ends are 
slightly scattering from the zero value, the linear trend 
removal does not have the effect of reducing error. On the 
other hand, it is obviously that Figs.4 and Figs.8 are rather 
similar. That means the linear trend removal performs very 
well in problems whose non-sinusoidal parts are signify-
cantly non-periodic. As a consequence, it is recommended 
to equip the linear trend removal to the proposed fast 
method.  
         Figure 9 shows the resulting smooth part estimated by 
the iterative Gaussian smoothing (heavy solid line) and the 
proposed method without linear trend removal (dashed line), 
respectively. The smooth part generated by the iterative 
Gaussian smoothing has upward going trend around the two 
end because of the temporary data. On the other hand, the 
missing data, with zero values, bends the result of present 
scheme downward as shown. The dashed line shown in 
Fig.10 uses the present method with linear trend removal 
which reduces the effect of missing data. Although there is 
no evidence, the author believes that that estimated by the 
linear trend removal is more reasonable than others. 
         The above discussions can be summarized as follows. 
1. The proposed fast version has almost the same 

performance as the iterative Gaussian smoothing 
performed on the time domain.  

2. The proposed method has the same error penetration 
distance character as the original method. In order to 
have a small enough error region around the two ends, 
it is recommended to use parameter set of  001.0=δ , 

7715.0/ 1 =λσ  and 127≈m . 
3. The operation count of the proposed method is 

approximately equal to kNNN +ln2 , where 100<k . 
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4. The linear trend removal can effectively reduce the 
error around the two ends. 

 
CONCLUSIONS 

 
         The original iterative Gaussian smoothing is 
approximated by a fast version. The resulting smooth and 
high frequency parts have the same order of accuracy in the 
interior region. The error around the two ends of a data 
string of finite length is similar to that the original method 
too. The linear trend removal is successfully employed to 
suppress the error around the two ends. Since the present 
method has an operation count about twice that of the FFT 
algorithm, it can be employed as a convenient tool for 
further studied.  
 

REFERENCES 
1.    E. O. Brigham, The Fast Fourier Transform, Prentice-Hall Inc. 

Englewood Cliffs, N. J., 1974, pp.164. 
2.    J. S. Bendat and A. G. Piersol, Random Data Analysis and 

Measurement Procedures, 3rd ed., John Wiley & Sons, New 
York, 2000, Chapters 10 & 11, pp.349-456. 

3.     R. Carmona, W. L. Hwang, and B. Torresani, Practical Time-
Frequency Analysis, Gabor and Wavelet Transforms with in 
Implementation in S, Academic Press, New York, 1998. 

4.    A. K. Mackworth, and F. Mokhtarian, “Scale-Based  Descri-
ption London, Ontario pp.114- 119, May 1984.  

5. F. Mokhtarian and A. Mackworth, “Scale-Based Description 
and Recognition of Planar Curves and Two-Dimensional 
Shapes,” IEEE Trans. Pattern Anal. Machine Intell., vol. 
PAMI-8, no. 1, pp. 34-43, Jan. 1986. 

6. D. G. Lowe, “Organization of Smooth Image Curves at 
Multiple Scales,” Int. J. Computer Vision, vol.3, pp.119-130, 
1989. 

7.     D. Marr and E. Hildreth, “Theory of Edge Detection,” Proc. 
Royal Soc. London B. vol.207, pp.187-217, 1980.  

8.     Weiss, “High-Order Differentiation Filters that Work,” IEEE 
Trans. on Pattern Analysis and Machine Intelligence, vol.16, 
no.7, July, pp.734-739, 1994. 

9.     B. K. Ray and K. Ray, “Corner Detection Using Iterative 
Gaussian Smoothing with Constant Window Size,” Pattern 
Recognition, vol.28, pp.1765-1781, 1995. 

10.  Y. N. Jeng, C. T. Chen, and Y. C. Cheng, “Some Detailed 
Information of a Low Speed Turbulent Flow over a Bluff Body 
Evaluated by New Time-Frequency Analysis,” AIAA paper 
no.2006-3340, San Francisco June, 2006. 

11.  H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in 
Solids,” New York, Oxford University Press, 1957. 

12.  Y. N. Jeng and Y. C. Cheng, “Fourier Sine/Cosine Spectrums 
and Errors of Derivatives Estimated by Spectrums,” Proc. 17th 
Combustion Conf., paper I07, March, 2007, Taiwan. 

13.  Y. N. Jeng and P. G. Huang, “Decomposition of One-
Dimensional Waveform with Finite Data length Using Iterative 
Gaussian Smoothing Method,” Proc. 31th National Conference 
on Theoretical and Applied Mechanics, DYU, Changhwa, 
Taiwan, paper no. ctam 30-389, Dec. 15-16, 2006. 

14. W. H. Press, S. A> Teukolsky, W. T. Vetterling, and B. P. 
Flannery, Numerical Recipes in C, the Art of Scientific 
Computing, 2nd ed., Cambridge Univ. press, 1992. 

ACKNOWLEDGEMENT 
        This work is supported by the National Science 
Council of Taiwan under the grant number NSC-95 -2212-
E006-133. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 The original data of Eq.(14) and smooth parts 
estimations: original data is the thin solid line, original 
smooth part is the heavy solid line, smooth part estimated 
by the original iterative Gaussian smoothing is the solid line, 
and that estimated by the present method is the dotted line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2 Error distributions of Fig.1: the solid line shows the 

error estimated by the iterative Gaussian smoothing 
and the dotted line is the error estimated by the 
present method. 
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Fig.3 Distributions of  smooth parts estimations: original 

smooth part is the heavy solid line, smooth part 
estimated by the original iterative Gaussian 
smoothing is the solid line, and that estimated by the 
present method is the dotted line. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Error distributions of Fig.3: the solid line shows the 

error estimated by the iterative Gaussian smoothing 
and the dotted line is the error estimated by the 
present method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 The original data of Eq.(15) and smooth parts 

estimations: original data is the thin solid line, 
original smooth part is the heavy solid line, smooth 
part estimated by the original iterative Gaussian 
smoothing is the solid line, and that estimated by the 
present method is the dotted line. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 Error distributions of Fig.5: the solid line shows the 

error estimated by the iterative Gaussian smoothing 
and the dotted line is the error estimated by the 
present method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7 The original data of Eq.(15) and smooth parts 

estimations: original data is the thin solid line, 
original smooth part is the heavy solid line, smooth 
part estimated by the original iterative Gaussian 
smoothing is the solid line, and that estimated by the 
present method using the linear trend removal is the 
dotted line. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 Error distributions of Fig.7: the solid line shows the 

error estimated by the iterative Gaussian smoothing 
and the dotted line is the error estimated by the 
present method. 
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Fig.9 The turbulent data distribution: thin solid is the 

original data; the heavy line is the smoothed part 
estimated by the iterative Gaussian smoothing; and the 
dashed line is estimated by the present method without 
linear trend removal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.10 The turbulent data distribution: thin solid is the 

original data; the heavy line is the smoothed part 
estimated by the iterative Gaussian smoothing; and the 
dashed line is estimated by the present method linear 
trend removal. 
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摘     要 
 

本文發展使用疊代式高斯平滑法的快速法，其運算

次數比離散式快速傅式轉換法的兩倍大一些，比

)ln(2 NN N100+ 略小。為了縮小高斯平滑法的濾波轉換

窗的窗口寬度，疊代式高斯平滑法最近被發展出來，但

其代價是虛需要大量運算時間。為了證明疊代式高斯平

滑法有擴散性，之前的文章也推出每個傅式波模的近似

衰減因子，並寫出其解析公式。本文直接將該含有疊代

次數和平滑參數的衰減因子，乘在每個傅式波模之振幅

上，其後作逆快速傅式轉換，發現其內部點的準確度與

原疊代式高斯平滑法相當，而數據串兩端的誤差略有不

同。本文進一步使用線性移除法，以降低數據兩端的誤

差。本文測試數個例子包括一組實驗數據，以說明新方

法的可用性。 
關鑑詞：疊代式高斯平滑法，頻譜法，線性移除法。 
 


